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Abstract 11 

Satellite ocean color datasets have vast potentials for assessing and monitoring of marine environments. 12 

However, with the MODIS sensor aging and the VIIRS sensor reaching maturity, it is important to 13 

continuously evaluate the quality of reflectance data from both instruments. Here, we critically assess 14 

the statistical performance of both MODIS and VIIRS, including analysis of two separate (and commonly 15 

used) VIIRS processing routines. In addition, we note variability in the literature as to the methods used 16 

to identify and remove low-quality data during similar validation exercises. Although most studies use 17 

some implementation of satellite quality flags (L2 flags) and many exclude data based on spatial 18 

heterogeneity or large temporal gap from satellite overpasses, critical assessment of these methods 19 

indicates variable performance. Indeed, we found little improvement in validation statistics after 20 

implementation of these data culling techniques, with substantial variability in effectiveness between 21 

wavebands and sensors. Overall, these findings highlight the need to critically assess the impact (on 22 

both data quantity and quality) of exclusion criteria, toward more effective techniques to ensure quality 23 

and consistency of satellite ocean color datasets. 24 

 25 

1. Introduction 26 

Over the past few decades, satellite ocean color sensors have proven their vast utility in assessment and 27 

monitoring of oceanic and coastal marine systems – providing high quality geophysical data products at 28 

scales unattainable using traditional sampling. The spatiotemporally synoptic data streams from these 29 
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sensors can elucidate otherwise hidden ocean features and patterns while reducing reliance on the 30 

more costly ship-borne measurements. To ensure the quality and consistency of the data from 31 

mainstream ocean color sensors [such as NASA’s Moderate Resolution Imaging Spectroradiometer 32 

(MODIS) on the satellite Aqua (MODISA) and the Visible Infrared Imaging Radiometer Suite (VIIRS) on 33 

the joint NASA/NOAA Suomi National Polar-orbiting Partnership satellite (Suomi-NPP)], it is important to 34 

regularly validate these data products against those measured at the water surface. This is especially 35 

true for newer (e.g., VIIRS, 2012-present) and aging instruments. In particular, MODISA (2002-present) is 36 

currently over 16 years old (design life of 6 years), and has recently shown some associated degradation 37 

(Meister et al., 2012; Meister and Franz, 2014), making it important to continually ensure accuracy of 38 

derived products and assess cross-sensor agreement (Barnes and Hu, 2015; Hu and Le, 2014). 39 

 40 

In the context of MODIS and VIIRS data, multispectral normalized water leaving radiance (nLw; mW cm-2 41 

um-1 sr-1) and remote sensing reflectance (Rrs; sr-1) products are the primary geophysical parameters 42 

from which most other products [e.g., chlorophyll a concentration (Ca; mg m-3)] are derived. These two 43 

products are equivalent as one can be derived from the other through Rrs = nLw / F0 where F0 is the 44 

mean extraterrestrial solar irradiance (a constant for a given wavelength). For brevity, wavelength 45 

dependence for Rrs and nLw is omitted here. Rrs is notoriously difficult to quantify, even in situ. In 46 

practice, in situ Rrs derivation from an above-water radiometer requires collection of multiple scans of 47 

upward radiance, diffuse downwelling irradiance, and sky radiance, followed by correction for skylight 48 

and sunglint (e.g., Lee et al., 2010) by an experienced analyst. This process can differ by research group, 49 

with sometimes variable outcomes (Garaba and Zielinski, 2013; Hooker et al., 2002; Toole et al., 2000). 50 

Similarly, in situ Rrs derivation from a submersible radiometer requires data reduction from depth to 51 

surface and from below surface to above surface, resulting in uncertainties in the final product (Antoine 52 

et al., 2008; Hooker et al., 2002). 53 
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 54 

Aside from the uncertainties associated with in situ Rrs data, comparing satellite-derived data to in situ 55 

measurements presents additional complications with respect to scale (Blackwell et al., 2008; Salama 56 

and Su, 2011). At nadir, MODIS and VIIRS pixels have approximate spatial resolutions of 1 km and 750 m, 57 

respectively. Given the spatial heterogeneity of ocean color (especially for nearshore environments), 58 

integrated Rrs measures over such large areas are not necessarily well represented by an in situ point 59 

measurement. Additionally, while simultaneous in situ / satellite measurements may be possible (e.g., 60 

from a buoy platform), temporal gaps between satellite and shipborne in situ validation datasets are 61 

much more common. Temporal instability of Rrs thus can reduce validation statistics, especially in 62 

nearshore environments (e.g., those modulated by tides). 63 

 64 

Atmospheric correction provides yet another layer of uncertainty for validation of satellite-derived Rrs. 65 

While the default procedures to perform atmospheric correction in MODIS and VIIRS data streams are 66 

truly state-of-the-art, absorbing atmospheric aerosols can cause large uncertainties in Rrs retrievals, 67 

especially in coastal environments (Gordon et al., 1997). Additionally, the two primary distributors of 68 

VIIRS data (NOAA and NASA) each use a different implementation of atmospheric correction, sensor 69 

calibration, and treatment for straylight adjacent to bright targets. Very briefly, one of the largest 70 

discrepancies between the NASA (via the software package SeaDAS, within which Level-1 to Level-2 71 

processing is performed using L2GEN) and NOAA (via MSL12) processing routines involves accounting 72 

for deviations to the black-pixel assumption (Gordon and Clark, 1981; Siegel et al., 2000), which is a 73 

pervasive problem for turbid coastal environments. In L2GEN, atmospheric correction over turbid 74 

coastal waters (non-black pixels) is through an iterative approach, whereby modeled inherent optical 75 

properties (IOPs) are used to estimate the non-zero Rrs in the near-infrared (NIR) wavebands (Bailey et 76 

al., 2010; Gordon and Wang, 1994; Mobley et al., 2016; Stumpf et al., 2003). In MSL12, atmospheric 77 
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correction over the same turbid coastal waters is through a combination of the Bailey et al., (2010), 78 

Ruddick et al., (2000), and Wang et al., (2012) approaches, with the former algorithm being used to 79 

estimate the aerosol single scattering reflectance ratios and the latter two algorithms being used to 80 

carry out atmospheric correction (Jiang and Wang, 2014). Traditionally, quality of satellite pixels is 81 

established via Level-2 Processing Flags (L2 Flags; Patt et al. 2003), with the goal of identifying pixels 82 

contaminated by sources of Rrs uncertainty (or invalidation), including clouds, sun glint, absorbing 83 

aerosols, and sensor geometry issues, among many others. Recently, Wei et al. (2016) provided an 84 

additional quality assessment method for in situ- and satellite-derived Rrs, which has been adopted 85 

within the MSL12 processing. 86 

 87 

Due to this multitude of uncertainties, mismatches, and sources of error, validation of satellite Rrs and 88 

nLw datasets requires accurate and robust in situ datasets covering a wide dynamic range of water 89 

properties, which take a significant amount of time and resources to collect. Even with a robust 90 

validation dataset, however, only a fraction of in situ Rrs will have matchups (collocated and coincident 91 

measurements) with satellite Rrs. This is especially true after the satellite data have been screened for 92 

the presence of clouds, sun glint, straylight, and other factors that reduce quality (or prevent 93 

calculation) of satellite-derived Rrs. 94 

 95 

Nevertheless, several studies have provided validation of MODISA and VIIRS Rrs data (Table 1). Overall, 96 

the majority of these studies have shown Rrs products provide consistent estimates (percent difference 97 

for green band Rrs matchups < 20%), which agrees with similar analyses using cross-validation between 98 

sensors (Barnes and Hu, 2016; Hu et al., 2015; Hu and Le, 2014; Li et al., 2015; Uprety et al., 2013). 99 

Matchup statistics are generally reduced (i.e., larger uncertainties) in the blue and red bands due to 100 

atmospheric correction uncertainties and strong water absorption, respectively (Antoine et al., 2008; 101 
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Franz et al., 2007). Note that target uncertainties for satellite retrievals of blue band nLw for very clear 102 

waters are 5% (Hooker et al., 1992; Hooker and Esaias, 1993). However, the uncertainties of in situ data 103 

can be at least that large (Bailey and Werdell, 2006; Hooker and Maritorena, 2000), making it difficult to 104 

disentangle uncertainties from these two sources unless uncertainties are evaluated using stable ocean 105 

targets instead of in situ measurements, for example over ocean gyres (Hu et al., 2013). Additionally, 106 

many validation efforts to date have focused on data from fixed platforms (see Table 1), meaning 107 

certain environments may be undersampled, including blooms, river plumes, and shallow waters (< 108 

10m) with variable bottom types and optical depths. 109 

 110 

Table 1: Summary of selected Rrs validation methods and results for MODISA and VIIRS sensors 111 

Citation Platform Environment Sensor 

Processing software, 

calibration version* 

CV 

Threshhold 

(box size) 

Temporal 

overlap 

(hr) 

Accuracy 

Statistic (547 

or 551 nm) 

Mélin et al., 2007 Fixed Coastal MODIS L2GEN, ~2005.1 0.2 (3x3) 3.5 MAPD = 14% 

Antoine et al., 2008 Fixed  Oceanic MODIS L2GEN, 2005.0 - (5x5) 3 MAPD = 17% 

Zibordi et al., 2009 
Fixed 

(AERONET) 
Coastal MODIS L2GEN, ~2005.1 0.2 (3x3) 2 MAPD = 10% 

Maritorena et al., 

2010 

Ship & Fixed 

(AERONET) 

Coastal & 

Oceanic 
MODIS L2GEN, 2005.1 - (-) - MR = 1.006 

Hlaing et al., 2013 
Fixed 

(AERONET) 
Coastal MODIS L2GEN, 2012.0 0.2 (3x3) 2 MAPD ~ 12% 

Brando et al., 2016 
Ship & Fixed 

(AERONET) 

Coastal & 

Oceanic 
MODIS L2GEN, 2014.0.1 - (3x3) 2 MAPD ~ 12% 

Wang et al., 2013 Fixed (MOBY) Oceanic VIIRS MSL12 - (11x11) - MR = 0.98 

Hlaing et al., 2013 
Fixed 

(AERONET) 
Coastal VIIRS L2GEN, 2012.2 0.2 (3x3) 2 MAPD ~ 12% 

Hlaing et al., 2013 
Fixed 

(AERONET) 
Coastal VIIRS MSL12, IDPS v6.6 0.2 (3x3) 2 MAPD = 14% 

Ahmed et al., 2013 
Fixed 

(AERONET) 
Coastal VIIRS L2GEN, 2013.0 0.2 (3x3) 2 

MAPD = 10 -

15% 

Brando et al., 2016 
Fixed 

(AERONET) 
Coastal VIIRS MSL12  0.2 (3x3) 2 MAPD = 14% 

Wang et al., 2014 Fixed (MOBY) Oceanic VIIRS MSL12 - (5x5) 8 MR = 0.992 

Vandermeulen et 

al., 2015 

Ship & Fixed 

(AERONET) 

Coastal & 

Oceanic 
VIIRS NRL-APS v5.1 - (-) 3 

RMSD = 0.160 

mW/cm2/m/sr 

Wang et al., 2015 Fixed (MOBY) Oceanic VIIRS MSL12 - (5x5) - MR = 1.0157 

Wang et al., 2016 Fixed (MOBY) Oceanic VIIRS MSL12 - (5x5) - MR = 1.0148 

Brando et al., 2016 
Ship & Fixed 

(Aeronet) 

Coastal & 

Oceanic 
VIIRS L2GEN, 2014.0.1 - (3x3) 2 MAPD ~ 12% 

MR = Mean Ratio, MAPD = Mean Absolute Percent Difference, RMSD = Root Mean Squared Difference, - 112 

= not performed or not reported, * Where not specified, approximate processing or calibration version 113 

reported  114 

 115 
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Furthermore, there is a general lack of consensus among these validation studies on the method used to 116 

assess satellite Rrs quality and remove low (or questionable) quality matchups. For example, the 117 

coefficient of variation (CV = standard deviation / mean) of an n x n pixel box (with the in situ sample 118 

location at the center) is often used to assess spatial homogeneity of the matchup location. The concept 119 

is that a highly variable environment (at the scale of satellite pixels) would more likely foster 120 

mismatches between the satellite and in situ targets. However, CV thresholds used for such data culling 121 

vary, with commonly used values including 0.4 (Harding et al., 2005; Le et al., 2013a, 2013b; Le and Hu, 122 

2013), 0.2 (Ahmed et al., 2013; Hlaing et al., 2013; Zibordi et al., 2009), 0.15 (Brown et al., 2008; Weeks 123 

et al., 2012; Werdell et al., 2009) and 0.1 (Barnes et al., 2013). Mélin et al. (2007) reported minimal 124 

degradation of Rrs matchup statistics for a coastal environment after relaxing the CV threshold.  125 

 126 

The average (or median) of the n x n pixel box can also be used to filter sensor and algorithm noise (Hu 127 

et al., 2001), particularly for those studies focused on oceanic waters. This can be performed in lieu of a 128 

CV threshold, or in addition to it. However, there is no consensus on the size of the box (for either the 129 

CV or box-mean approaches), with sizes including 3x3 (Ahmed et al., 2013; Brando et al., 2016; Hlaing et 130 

al., 2014), 5x5 (Antoine et al., 2008; Wang et al., 2016, 2015, 2014), and even 11x11 (Wang et al., 2013). 131 

Indeed, even though Bailey and Werdell (2006) provide a comprehensive calculation to justify a 7x7 box 132 

for SeaWiFS data, statistics are reported using a 5x5 box with no degradation.  133 

 134 

Note that regardless of the method to address spatial heterogeneity, there is variability between studies 135 

on the method used to extract satellite data, with many extracting from Level-2 (unmapped) data 136 

(Ahmed et al., 2013; Antoine et al., 2008; Brando et al., 2016; Wang et al., 2015), while others use Level-137 

3 (mapped) products (Barnes and Hu, 2016; Wang et al., 2013). For the latter, a cylindrical equidistant 138 

projection is typically used, with the spatial resolution of the grid being the sensor-specific spatial 139 
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resolution at nadir (~1 km for MODIS, 750 m for VIIRS). As the footprint of Level-2 pixels expands at the 140 

swath edge (MODIS Level-2 pixels at the scan edge are approximately 5 x 2 km, while VIIRS scan edge 141 

pixels are approximately 1.6 x 1.6 km), mapping can result in a single Level-2 pixel covering several 142 

“pixels” in the Level-3 grid. This presents obvious ramifications for either of the n x n pixel methods used 143 

to address spatial heterogeneity. Even for unmapped (Level-2) products, pixel area expansion at the 144 

scan edge causes larger spatial areas to be assessed, while the bowtie effect can cause spatial overlaps 145 

in the n x n pixel region, especially at the boundaries between scan lines (Figs. 1-2). These impacts 146 

manifest differently for MODIS (Fig. 1) and VIIRS (Fig. 2) data due to the VIIRS pixel aggregation scheme, 147 

which results in “deleted” pixels (Cao et al., 2013) on the scan line edges at higher sensor zenith angles. 148 

Nevertheless, for both sensors, these impacts mean that n x n spatial heterogeneity procedures are not 149 

always considering exactly what is expected. 150 

 151 

 152 
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Figure 1: Spatial extents of 5 x 5 pixel boxes in a MODIS Level-2 granule as used for spatial 153 

heterogeneity testing (or box averaging) at various sensor zenith angles (SZA). (a) Geographic 154 

pixel centers of L2 data products at 0° SZA, with scan lines (10 detectors for MODIS) designated 155 

and pixel columns separated by color. (b-e) Approximate spatial extent of 5 x 5 pixel pox (blue) 156 

for arbitrarily selected in situ sample locations (stars) – only two pixel columns are shown for 157 

clarity. (b) For matchups near the scan line center at 0° SZA (or at any other SZA), the 5 x 5 pixel 158 

box is a rectangle oriented parallel to the pixel column. At the scan line edge (c-e), however, 159 

incongruities in the pixel centers can cause non-rectangular shapes (c), while the bowtie effect 160 

can cause overlap in the 5 x 5 pixel area (d-e). Enlargement of pixel area at higher SZA means a 161 

larger area is considered in the 5 x 5 pixel boxes. Panels b-e have the same scale. Pixel centers 162 

from approximately 30° N latitude. 163 

 164 

 165 

Figure 2: Similar to Fig. 1, showing approximate VIIRS 5 x 5 pixel box areas (blue) surrounding in 166 

situ samples (stars) placed near scan line boundaries at various sensor zenith angles (SZA). Only 167 

two pixel columns (red dots and blue dots) shown in each panel for clarity. Deleted pixels (d-f) 168 

resulting from VIIRS pixel aggregation scheme contain no geophysical data and are not 169 

considered in the 5 x 5 boxes – their geographic locations are represented by ‘x’. All panels have 170 

the same scale. Pixel centers from approximately 30° N latitude. 171 

 172 



9 

 

For temporal overlap, most studies require satellite / in situ matchups used in validation analyses to be 173 

either same day (Wang et al., 2014), within 3 hours (Antoine et al., 2008; Vandermeulen et al., 2015), or 174 

within 2 hours (Ahmed et al., 2013; Brando et al., 2016; Zibordi et al., 2009). Nevertheless, Mélin et al. 175 

(2007) and Barnes and Hu (2015) note no difference in matchup statistics with variable temporal overlap 176 

thresholds. Finally, for the few studies that directly list them, the specific Level-2 processing flags used 177 

to discard low-quality satellite data can vary between studies (Table 2). Despite this variability in 178 

methods, few studies statistically justify the specific thresholds (or flagging schemes) used, or provide 179 

any assessment of the impact of these particular values on the validation statistics. 180 

Table 2: Level-2 Processing Flags (from http://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/ and Wang et al., 181 

2017).  182 
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0  X X X X ATMFAIL ATMFAIL Atmospheric correction failure 

1 X X X X X LAND LAND Pixel is over land 

2      PRODWARN PRODWARN Warning from ≥ 1 product algorithms 

3  X X X X HIGLINT HIGLINT Sunglint: reflectance exceeds threshold 

4 X X X X X HILT HILT Radiance very high or saturated 

5  X X X X HISATZEN HISATZEN Sensor zenith angle exceeds threshold 

6      COASTZ COASTZ Pixel is in shallow water 

7      Spare LANDADJ [Probable land-adjacent contamination] 

8  X X X X STRAYLIGHT STRAYLIGHT Probable stray light contamination 

9 X X X X X CLDICE CLOUD Probable cloud or ice contamination 

10  X    COCCOLITH COCCOLITH Coccolithophores detected 

11      TURBIDW TURBIDW Turbid water 

12  X X X X HISOLZEN HISOLZEN Solar zenith angle exceeds threshold 

13      Spare HITAU [High Aerosol Optical Thickness] 

14  X X X ? § LOWLW LOWLW Very low water-leaving radiance 

15  X  ? †  CHLFAIL CHLFAIL Chlorophyll algorithm failure 

16  X X  ? NAVWARN NAVWARN Navigation quality is suspect 

17  X    ABSAER ABSAER Absorbing Aerosols determined 

18      Spare CLDSHDSTL [Cloud straylight or shadow] 

19  X X   MAXAERITER MAXAERITER NIR iteration limit reached 

20    ? X MODGLINT MODGLINT Moderate sun glint  

21    ? †  CHLWARN CHLWARN Chlorophyll out-of-bounds 

22  X X   ATMWARN ATMWARN Atmospheric correction is suspect 

23      Spare ALGICE [Sea ice identified by nLw] 

24      SEAICE SEAICE Pixel is over sea ice 

25  X X  X NAVFAIL NAVFAIL Navigation failure 

26      FILTER FILTER Insufficient data for smoothing filter  
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27      Spare ALTCLD [Cloud detected] 

28      BOWTIEDEL FOG VIIRS deleted overlapping pixels [Fog] 

29      HIPOL FROMSWIR High polarization [SWIR atm. corr. used] 

30      PRODFAIL PRODFAIL Failure in any product 

31      SPARE OCEAN [Pixel is over ocean] 

* The L3 mask is used for generation of global composite data products. 183 

‡ The “current” mask is that used throughout this study 184 

† Includes additional flag(s) specific to Ca. Also used by Antoine et al. (2008), Mélin et al. (2007), Zibordi 185 

et al. (2009) 186 

§ Includes additional flag for negative Rayleigh-corrected reflectance. Also used by Ahmed et al. (2013).  187 

 188 

As such, this work follows two main objectives. First is to compare different validation methods of 189 

satellite Rrs data through the use of a large dataset covering a variety of water types ranging from 190 

estuarine, coastal, and oceanic in North America. The other is to evaluate these Rrs data products from 191 

VIIRS (both MSL12 and L2GEN processing) and MODISA (L2GEN processing only). Specifically, we present 192 

MODISA and VIIRS Rrs validation against the in situ dataset, assess typical data quality control 193 

methodologies, and provide environment-specific recommendations for future validation efforts, with 194 

the ultimate (and ongoing) goal of establishing high-quality, self- and cross-consistent environmental 195 

data records.  196 

 197 

2. Methods 198 

2.1. In situ data 199 

Above-water reflectance data were collected between 2012-2017 using a handheld radiometer on 53 200 

cruises in the Gulf of Mexico and waters off the southeast US coast (colloquially termed ‘South Atlantic 201 

Bight’, Fig. 3). Spectra were collected with the reflectance plaque radiance method described in the 202 

NASA ocean optics protocols (Mueller et al., 2003), using either a custom-built spectral radiometer 203 

(Spectrix; <3nm spectral resolution; ~350–800 nm) or a FieldSpec HandHeld 2-Pro Spectroradiometer 204 

(ASD). Specifically, at each station, multiple observations of upwelling radiance, diffuse downwelling 205 

irradiance (gray 10% diffuse reflector; Spectralon), and sky radiance were collected. During these data 206 
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collections, senor zenith angle was constrained to 30 - 40° (from nadir for water measurements, and 207 

from zenith for sky measurements), while sensor azimuth was generally ~90°, up to 130° to avoid sun 208 

glint. For each radiance / irradiance parameter, obvious outlier scans were removed and the average of 209 

the remaining scans were used to calculate Rrs(λ) spectra (N = 432). The reflectance of the grey 210 

reference plaque was adjusted using solar zenith angles to reduce the biases introduced by the non-211 

lambertian response of the reference plaque, while skylight and sunglint corrections were performed 212 

using optimization (Lee et al., 2010). Because the upwelling radiance below water is nearly isotropic for 213 

small angles, no BRDF correction was applied in the Rrs estimates. Error budgets for the Rrs dataset 214 

(sensu Zibordi, 2016) indicate uncertainties at 550 nm generally between 5% and 10%. Additionally, a 215 

round-robin comparison conducted with both above- and below-water Rrs measurements from ≥ 10 216 

other groups during collection of many of the in situ data indicated between-sensor agreement within 217 

~7% for wavelengths from 410 – 550 nm (Kovach and Ondrusek, 2018). 218 

 219 

 220 
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 221 
Figure 3: Map of sample locations, concentrated in the Gulf of Mexico and South Atlantic Bight, 222 

grouped according to matchup(s) with satellite data. These data were collected from 53 cruises 223 

of lengths from 1 to 35 days in 2012-2017. Enlargements shown for three regions (1. Florida 224 

Panhandle estuaries, 2. Florida Big Bend region, and 3. Tampa Bay) with high sample density (1-225 

3 all have same spatial scale).  226 

 227 

The Rrs quality assessment technique of Wei et al. (2016) was applied (using data subsampled to 9 228 

wavelengths), yielding an Rrs quality score (hereafter termed ‘QA_Wei’) and water type for each 229 

spectra. For visualization of these water types, normalized Rrs (nRrs) spectra (dimensionless) were also 230 

calculated using these 9-band spectra by dividing each spectra by its root sum of squares (Wei et al., 231 

2016). Rrs spectra with QA_Wei < 0.5 were further scrutinized to determine if any collection or 232 

processing characteristics (e.g., high solar zenith, unfavorable sea state, low scan repeatability, low 233 

signal-to-noise, etc.) warranted exclusion from the validation dataset. Note that while most spectra with 234 

QA_Wei < 0.5 were justifiably disqualified from further analyses, several seemingly high quality spectra 235 

showed very low QA_Wei (even QA_Wei = 0), but were not removed from the validation dataset for 236 

reasons explained below. All spectra were convolved to VIIRS and MODIS spectral bandwidths using the 237 
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instrument- and band-specific relative spectral response functions. Note that while the VIIRS band 238 

centers (410, 443, 486, 551, and 671) differ slightly from associated MODIS band centers (412, 443, 488, 239 

547, and 667), for this study we refer to the VIIRS band center names for both sensors, where 240 

appropriate.  241 

 242 

2.2. Satellite data 243 

MODISA and VIIRS granules covering the date and location of each in situ Rrs spectrum were 244 

downloaded at Level-2 from NASA GSFC archives (https://oceancolor.nasa.gsfc.gov) on 29 January 2018. 245 

These files conform to calibration 2018.0, for which atmospheric correction was performed with the 246 

iterative NIR approach (Bailey et al., 2010; Gordon and Wang, 1994; Mobley et al., 2016). VIIRS “science 247 

quality” data for these dates and locations were also acquired from NOAA CoastWatch 248 

(https://coastwatch.noaa.gov) on 21 February 2018. These data correspond to the April 2017 SDR and 249 

calibration update, with atmospheric correction performed using the NIR-SWIR procedure (Gordon and 250 

Wang, 1994; Jiang and Wang, 2014; Wang et al., 2017; Wang and Shi, 2007). Within this manuscript, 251 

VIIRS data from these two sources are termed ‘VIIRS L2GEN’ and ‘VIIRS MSL12’, respectively.  252 

 253 

For each in situ spectrum and sensor, all same-day and collocated Level-2 satellite pixel(s) were 254 

identified. To account for overlapping scan lines and pixel enlargement at the scan edge, the “nearest” 255 

pixel was identified by first finding the scan line center which passed nearest to the sample location, 256 

then finding the geographically closest pixel within that scan line. Products including spectral Rrs (nLw 257 

for VIIRS MSL12) and Level-2 processing flags were extracted for each sample location and the 258 

surrounding 3x3 pixel box. For consistency, MSL12 nLw(λ) data were converted to Rrs 259 

[Rrs(λ)=nLw(λ)/F0(λ)] using spectral response integrated F0 values (Thuillier et al., 2003). In practice, 260 

there are slight variations between the F0 values used in the MSL12 and L2GEN processing routines, 261 
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thus the F0 values embedded in the Level-2 granules (NetCDF4 attributes) were used. Additionally, 262 

QA_Wei were calculated for all matchup spectra. Note that although VIIRS MSL12 L2 granules include a 263 

‘qa_score’ product, the QA_Wei algorithm (as used in this manuscript) has been slightly updated since 264 

the MSL12 implementation (Menghua Wang, Jianwei Wei, personal communication). Although no Level-265 

2 Processing Flags were applied to remove low-quality data at the time of data extraction, default 266 

processing precludes atmospheric correction (thus Rrs or nLw derivation) for any pixels identified as 267 

ATMFAIL, LAND, HILT, and CLDICE (termed “CLOUD” in MSL12 datasets; see Table 2 for a description of 268 

relevant L2 flags).  269 

 270 

2.3. Statistical validation 271 

Unbiased percent difference (UPD) and mean relative difference (MRD; also termed Relative Percent 272 

Difference, RPD, and Mean Percent Difference, MPD) were the primary measures used to assess satellite 273 

accuracy and bias, respectively, as: 274 

��� =
���

�
× ∑

|����|

�.�×�������
�
���  ,      (1) 275 

and 276 

��� =
���

�
× ∑

������

��

�
���  ,                  (2) 277 

where Xi and Yi are the in situ and satellite data, respectively, for matchup i of N total. Whereas most 278 

similar studies report Rrs accuracy as Mean Absolute Percent Difference (MAPD; or Average APD, AAPD), 279 

UPD was specifically selected in this study due to the uncertainties in both the satellite and in situ 280 

datasets (Hu and Le, 2014). For direct comparison to other published validation results, other statistical 281 

measures were also calculated, including Root Mean Squared Difference (RMSD), Mean Ratio (MR), 282 

MAPD, Mean Relative Bias (MRB), and coefficient of determination (R2). Simple linear regression slope 283 

(β1) and intercept (β0) were calculated, as were β0 and β1 as determined from reduced major axis (RMA) 284 

regression (also termed ‘Model II’ regression), which accounts for error in the in situ data (Sokal and 285 
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Rohlf, 1995). For UPD, MRD, MAPD, and MR, margin of error for 95% confidence intervals were 286 

calculated as 287 

���� = ����� ∗
����� 

!"       (3) 288 

where T is the critical t-value for a significance level (α) of 0.025 and N – 1 matchups, and σparam is the 289 

standard deviation associated with a parameter (e.g., UPD). The 95% confidence intervals were also 290 

calculated for all regression coefficients. To reduce multiplicity, we did not perform pairwise t-tests to 291 

compare conditions, instead we considered groups ‘statistically significant’ only if their 95% confidence 292 

intervals did not overlap.  293 

 294 

MRD and UPD were assessed according to a variety of exclusion criteria, including Level-2 Processing 295 

Flags, water type, QA_Wei, spatial homogeneity, and temporal difference between satellite and in situ 296 

measurements. Spatial homogeneity was assessed as the coefficient of variation (CV = standard 297 

deviation / mean) for the 3 x 3 pixel box with the matchup pixel in the center. In most analyses, satellite 298 

data were partitioned into ‘Low Ca’ and ‘High Ca’ categories according to the identified water type (Wei 299 

et al., 2016), with the former category encompassing water types 1-7 (exclusively offshore waters) and 300 

the latter being water types 8-23 (all collected nearshore). For these analyses, only categories with more 301 

than 10 matchups that met the conditions were considered. Additionally, for these analyses, 302 

implementation (or activation) of Level-2 processing flags is defined as excluding any data with ≥ 4 flag-303 

identified pixels in the 3 x 3 pixel box surrounding the matchup pixel. 304 

 305 

3. Results 306 

3.1. In situ sample and matchup characteristics 307 

After the quality control methods were applied, 413 in situ Rrs spectra remained for validation against 308 

satellite datasets. Temporal distribution of the in situ samples generally follows timing of cruise events, 309 
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with winter months (January – March) and certain years (2014 and 2017) being underrepresented (Fig. 310 

4a). Fortuitously, nearly 57% of in situ samples had a same-day matchup with at least one of the satellite 311 

datasets studied (N=233; lightly shaded bars in Fig. 4b-c). Over 65% of these matchups, however, were 312 

identified as low quality by at least one of the Level-2 Processing Flags considered in this study (i.e., 313 

excluding LAND, HILT, and CLDICE, see “current” mask in Table 2), leaving only 81 samples (20% of the 314 

original total) matching up with at least one satellite dataset.  315 

 316 

 317 
Figure 4: Distribution of (a) in situ samples, and (b-d) satellite / in situ matchups according to 318 

(left column) month, (middle column) year, and (right column) solar zenith angle. For b-d, lighter 319 

color shows any satellite / in situ matchups, while darker color excludes matchups identified by 320 

the “current” L2 flags (see Table 2). Solar Zenith angle histograms in (b-d) represent those for 321 

the satellite measurements, while data in (a) are correspond to the in situ measurements. 322 

 323 

The 233 in situ Rrs that matched up with at least one satellite dataset were of overall high quality (mean 324 

QA_Wei = 0.9), and included all but two of the water types (9 and 14) described by Wei et al. (2016) (Fig. 325 
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5). Of particular note, six of these spectra (colored black in Fig. 5) had very low QA_Wei (mean = 0.2). 326 

These were all identified as water type 19, and were collected in Florida Big Bend coastal waters (2-5 m 327 

depth) with high chlorophyll concentrations (6-11 mg m-3), extremely high CDOM absorption (ag(443) = 328 

4-18 m-1), and low Rrs(551) (< 0.0005 sr-1).  329 

 330 

 331 
Figure 5: Normalized Rrs (nRrs) for in situ data with satellite matchups. Spectra are colored 332 

according to water type (see Figure 4 in Wei et al., 2016), with the exception of black spectra (all 333 

identified as water type 19) with low QA_Wei. 334 

 335 

3.2. Level-2 Processing Flags 336 

Level-2 Processing Flags are implemented by MSL12 and L2GEN to identify pixels with potentially low 337 

Rrs quality (e.g., optically complex atmosphere, adjacent to bright targets, bottom effects), which may 338 

indicate that the atmospheric correction routines are being applied to conditions outside their design 339 

bounds. Therefore, Rrs from flag-indicated pixels are likely to have larger uncertainties, thus increasing 340 

potential disagreement between satellite and in situ measurements. The default L2GEN and MSL12 341 

processing routines both terminate atmospheric correction (thus do not produce Rrs or nLw) for any 342 

pixel identified as HILT, LAND, or CLDICE. Similarly, pixels flagged as ATMFAIL also do not produce Rrs (or 343 
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nLw). The remaining flags, however, were individually activated (i.e., matchups were removed from 344 

analyses if ≥ 4 pixels were identified by the flag in the 3 x 3 pixel box) to assess impacts on both data 345 

quantity and quality (Fig. 6). UPD and MRD were also calculated for several flagging regimes, including 346 

“None” (no flags activated except HILT, LAND, CLDICE, and ATMFAIL), “All” (matchups removed if ≥ 4 347 

pixels in the 3 x 3 box were indicated by any flag), “L3 Mask” (see Table 2), and the “Current” mask used 348 

for most of this work (Table 2). The latter is based off of the L3 Mask, but ignores the flags COCCOLITH, 349 

CHLFAIL, and ABSAER. This mask is thus largely a combination of the masks used by Bailey and Werdell 350 

(2006) and Hlaing et al. (2013), although it is slightly more stringent with inclusion of MODGLINT, 351 

MAXAERITER, and ATMWARN.   352 

 353 

These analyses showed variability in both matchup statistics and data quantity resulting from masking 354 

by individual flags or specific masking regimes (Fig 6). With several exceptions, UPD and MRD were 355 

closest to 0 for flags (or masking regimes) which disqualified the most pixels. For example, the “all” 356 

masking regime (pixels excluded if identified by any flag) resulted in only a few data points with very 357 

high quality relative to other masking regimes for nearly all sensors and bands. Note, however, that data 358 

quality according to masking regime was not consistent by waveband or sensor. For example, activating 359 

the STRAYLIGHT flag resulted in the second lowest UPD values among individual flags for the 410 nm 360 

band for all sensors. This flag, however, had little impact on UPD (relative to other individual flags) for 361 

most other bands, and was worse (higher UPD and MRD) than other flags for the VIIRS MSL12 671 nm 362 

band.  363 
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 364 
Figure 6: (a-e) UPD (blue shades, left axis) and MRD (red shades, right axis) of MODISA 365 

(cyan/pink), VIIRS L2GEN (blue/red), and VIIRS MSL12 (navy/maroon) matchups after masking by 366 

various individual flags or masking regimes. Results shown independently for (a) 410, (b) 443, (c) 367 

486, (d) 551, and (e) 671 nm bands. The number of matchups remaining after masking (f) has 368 

the same color legend as the UPD data. Hollow data markers shown if there were no instances 369 

of flag activation in the dataset. * indicates flags used in MSL12 processing only.  370 

 371 

 372 
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 373 

3.3. Quality of satellite Rrs 374 

The remaining spectra (i.e., those not masked by the “current” flagging regime) were assessed according 375 

to their QA_Wei scores and water types (Fig. 7). To emulate masking criteria as commonly used in 376 

validation exercises, all matchup pixels with QA_Wei ≥ various thresholds were used to calculate UPD 377 

and MRD. During this comparison, QA_Wei scores for neighboring pixels (i.e., the 3 x 3 pixel box) were 378 

not considered. Overall, both the low and high Ca datasets showed little variation in matchup statistics 379 

according to QA_Wei (most lines in Fig. 7 are relatively flat, with few significant differences between 380 

points). One exception is the most stringent QA_Wei threshold, whereby in datasets restricted to 381 

matchups with QA_Wei = 1, jumps in UPD relative to less stringent thresholds were observed (e.g., Low 382 

Ca, MODIS 412nm). In one instance (High Ca, VIIRS MSL12 443 nm band), this change was statistically 383 

significant (indicated by red circle in Fig. 7). Often this jump was in the positive direction, meaning that 384 

the reduction of data quantity was not coupled with improved data quality.  385 

 386 

Irrespective of QA_Wei, for all sensors, Low Ca matchups (i.e., those identified as water types 1-7, which 387 

were exclusively offshore waters) generally showed improved (lower) UPD (Fig. 7) and reduced MRD 388 

(not shown) relative to higher Ca waters (water types 8-23, collected in nearshore waters). This effect 389 

was largest for the shorter wavebands, and reduced (or reversed) with increasing wavelength. 390 

Additionally, matchup statistics were considerably better for the 486nm and 551nm wavebands as 391 

compared to longer and shorter wavelengths. 392 

 393 

 394 
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 395 
Figure 7: UPD (± 95% confidence intervals) and data quantity (bottom row) for matchup data 396 

according to various QA_Wei thresholds (Wei et al., 2016) – all pixels with QA_Wei ≥ the 397 

threshold are included in calculated UPD. Data from MODISA (left column), VIIRS L2GEN (center 398 

column), and VIIRS MSL12 (right column) are separated by waveband (from top to bottom row: 399 

410, 443, 486, 551, and 671 nm), and partitioned into low Ca (blue dotted lines; water types 1-7) 400 

and high Ca (green solid lines; water types 8-23). Red circle indicates significant difference from 401 

preceding point (i.e., lower QA threshold). 402 

 403 

3.4. Spatial homogeneity 404 

Matchup data which remained after masking by the “current” L2 Flags masking regime were additionally 405 

partitioned according to spatial homogeneity, assessed as the CV of the 3x3 pixel box with the matchup 406 

location in the center (Fig. 8). MRD and UPD were calculated for all pixels with CV ≤ various thresholds. 407 

Note that CV calculations did not include flag-identified pixels (recall that matchups are discarded only if 408 

≥ 4 of the 9 pixels in the 3 x 3 pixel box are flagged). As with the QA_Wei analysis (Section 3.3), this 409 

analysis was performed separately for the Low Ca (water types 1-7) and High Ca (water types 8-23) 410 

spectra. In most cases, little deviation in UPD or MRD (not shown) was observed for CV thresholds ≥ 0.2. 411 
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Results were variable for more stringent (i.e., lower) CV thresholds, with some sensors and bands 412 

showing improvement with decreasing CV (e.g., MODIS blue bands), while others show no change or 413 

even degradation of matchup statistics (e.g., VIIRS MSL12 blue for high Ca waters). Satellite data in the 414 

red bands have higher CV owing to the smaller magnitude of the reflectance data. Note that only a few 415 

matchups drive the significant differences between VIIRS L2GEN 442 and 551 nm data for the CV ≤ 0.4 416 

threshold, as compared to the 0.6 threshold. 417 

 418 

 419 

 420 

 421 

 422 
Figure 8: UPD (± 95% confidence intervals; left axes) and data quantity (as a percentage of the 423 

total N in each category; black; right axis) for matchup data according to various CV thresholds – 424 

UPD values represent all pixels with CV ≤ the CV threshold. Data from MODISA (left column), 425 

VIIRS L2GEN (center column), and VIIRS MSL12 (right column) are separated by waveband (from 426 

top to bottom row: 410, 443, 486, 551, and 671 nm), and partitioned into low Ca (blue dotted 427 

lines; water types 1-7) and high Ca (green solid lines; water types 8-23). Data partitions with N < 428 
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10 are excluded. Red circles indicate significant difference from preceding point (i.e., higher CV 429 

threshold). 430 

 431 

3.5. Temporal concordance 432 

Finally, matchups were assessed according to the temporal gap between the satellite and in situ 433 

measurement times, again using separate partitions for Low Ca (water types 1-7) and High Ca (water 434 

types 8-23) spectra (Fig. 9). Specifically, UPD and MRD were calculated for all pixels (those which were 435 

not excluded by “current” L2 Flags masking regime) for which the temporal gap between the satellite 436 

and in situ data was ≤ various thresholds (1 to 6 hours in 1 hour increments). Although most trends were 437 

not statistically significant, for VIIRS data (both L2GEN and MSL12), Low Ca waters showed a general 438 

upward trend with tightening temporal difference thresholds, while high Ca waters showed the opposite 439 

effect. MODIS data were more variable, especially for high Ca waters, for which increases in UPD 440 

associated with tighter temporal overlap criteria were observed for the 410 and 443 nm bands, while a 441 

decrease was seen for the 551 nm band. Data quantity was lacking (N < 10) for the Low Ca condition for 442 

VIIRS and the High Ca and Low Ca conditions for MODISA, precluding further interpretation of these 443 

trends. 444 

  445 

 446 
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 447 
Figure 9: UPD (± 95% confidence intervals) and data quantity (bottom row) for matchup data 448 

according to various thresholds of temporal difference between satellite and in situ 449 

measurements. UPD and MRD values represent all pixels with time difference ≤ the maximum 450 

threshold. Data from MODISA (left column), VIIRS L2GEN (center column), and VIIRS MSL12 451 

(right column) are separated by waveband (from top row: 410, 443, 486, 551, and 671 nm), and 452 

partitioned into low Ca (blue dotted lines; water types 1-7) and high Ca (green solid lines; water 453 

types 8-23). Data partitions with N < 10 are excluded. Unlike Figures 6-8, axis limits are not the 454 

same for all wavebands. Red circle indicates significant difference from preceding point (i.e., 455 

longer threshold for temporal difference between measurements).  456 

 457 

3.6. Overall matchup statistics 458 

The analyses above highlight some examples of improvement (although variable by band) in matchup 459 

statistics through the application of various L2 Flags or masking regimes. However, none of the other 460 

methods to cull low quality data individually showed widespread (across sensors and bands) 461 

effectiveness at improving the statistical relationships. As such, we compared scatterplot and matchup 462 

statistics for three QA schemes: (1) masking using the minimal L2 Flags (“none” mask; i.e., all matchups 463 

are allowed), (2) implementation of the “current” L2 Flags mask, and (3) implementation of both the 464 

“current” L2 Flags mask and thresholds for CV and temporal overlap of 0.2 and 2 h, respectively (Zibordi 465 
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et al., 2009). These results are presented in scatterplots (Fig. 10), as well as tabular form for the latter 466 

two datasets (Tables 3-5). Again, CV calculations do not incorporate flag-indicated pixels, while pixels 467 

with ≥ 4 flagged pixels in the 3 x 3 pixel box are excluded. 468 

 469 

 470 
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Figure 10: Scatterplots showing in situ / satellite Rrs (sr-1) matchups for three QA schemes: all 471 

matchups (L2 flags regime “None”, black dots), “Current” Flags activated (red ‘+’), and “Current” 472 

Flags activated, CV < 0.2, and temporal overlap < 2h (blue ‘x’). Data shown separately for 473 

MODISA (left column), VIIRS L2GEN (middle column), and VIIRS MSL12 (right column), and by 474 

waveband (from top row: 410, 443, 486, 551, and 671 nm). 475 

Overall, Fig. 10 and Tables 3-5 show a general concordance between satellite and in situ data, with the 476 

exception of obvious outliers that were exclusively restricted to the most lenient flagging scheme. 477 

Nevertheless, variable performance was seen in matchup statistics between these three QA masking 478 

schemes and by satellite dataset. The QA masking schemes also had substantial impacts on data 479 

quantity and dynamic range, with increasingly stringent masking schemes generally culling at least half 480 

or more of the data, particularly affecting higher Rrs values (as measured both in situ and by satellite). 481 

Interestingly, the different metrics used occasionally disagreed on the “best” performing QA scheme 482 

(Tables 3-5). For example, looking at MODISA Rrs(412) matchups (Table 3), UPD identified the most 483 

restrictive mask as better performing, however MRD and MR found that the dataset masked only by the 484 

“Current” L2 Flags outperformed the other masking scheme.  485 

 486 

Table 3: Matchup statistics for MODISA data according to two QA schemes.  487 

 “Current” L2 Flags applied “Current” Mask, CV < 0.2, +/- 2 h 

Band (nm) 412 443 488 547 667  412 443 488 547 667 

UPD (%) 33 (1) 27 (1) 18 (1) 19 (1) 33 (1) 29 (2) 26 (2) 14 (1) 16 (1) 29 (2) 

MRD (%) 27 (2) 24 (2) 7 (1) 8 (1) 27 (2) 39 (6) 34 (3) 13 (2) 13 (2) 29 (3) 

RMSD 0.0014 0.0012 0.0013 0.0018 0.0007 0.0014 0.0011 0.0009 0.0012 0.0004 

MAPD (%) 43 (2) 35 (2) 19 (1) 21 (1) 42 (2) 45 (5) 37 (3) 17 (1) 19 (2) 38 (3) 

MR 0.98 (0.02) 0.92 (0.01) 0.99 (0.01) 0.99 (0.01) 0.93 (0.01) 0.84 (0.02) 0.82 (0.01) 0.91 (0.01) 0.93 (0.01) 0.86 (0.02) 

R2 0.87 0.85 0.84 0.82 0.71 0.89 0.91 0.93 0.91 0.67 

β0 (*104) 2.9 (5.8) 6.4 (5.7) 9.5 (5.9) 9.8 (5.9) 3.5 (1.6) 6.8 (8.2) 7.1 (6.2) 4.4 (5.8) 3.2 (6.7) 2 (2.4) 

β1 1.03 (0.1) 0.94 (0.11) 0.82 (0.1) 0.76 (0.09) 0.61 (0.11) 1.01 (0.15) 1 (0.12) 0.99 (0.11) 1 (0.13) 0.87 (0.24) 

RMA β0 (*104) -0.2 (4.8) 2.8 (5) 5.6 (5.3) 6.1 (4.6) 2.3 (1.1)  4.1 (7.1) 5.1 (5.5) 2.7 (5.3) 1.1 (5.4) 0.6 (2) 

RMA β1 1.11 (0.1) 1.02 (0.1) 0.89 (0.09) 0.84 (0.09) 0.73 (0.1)  1.08 (0.14) 1.05 (0.11) 1.02 (0.1) 1.06 (0.12) 1.07 (0.22) 

Max (sr-1) 0.013 0.011 0.017 0.022 0.006 0.012 0.009 0.012 0.014 0.002 

N 58 58 58 58 58 27 30 29 30 29 

**Numbers in parentheses indicate 95% confidence intervals (± ME) for listed statistics, underlined values indicate significant improvement. 488 

 489 

Table 4: Matchup statistics for VIIRS L2GEN data according to two QA schemes.  490 

 “Current” L2 Flags applied “Current” Mask, CV < 0.2, +/- 2 h 

Band (nm) 410 443 486 551 671  410 443 486 551 671 
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UPD (%) 27 (1) 23 (1) 19 (1) 21 (1) 37 (1) 25 (2) 20 (2) 17 (1) 21 (2) 27 (2) 

MRD (%) 21 (2) 20 (2) 9 (1) 1 (1) 10 (3) 26 (5) 20 (3) 7 (2) 0 (3) 7 (5) 

RMSD 0.0013 0.0015 0.0021 0.0024 0.0007 0.0015 0.0015 0.0019 0.0018 0.0005 

MAPD (%) 37 (2) 30 (2) 22 (1) 23 (1) 43 (2) 36 (5) 26 (3) 19 (2) 23 (3) 31 (4) 

MR 0.97 (0.01) 0.93 (0.01) 0.98 (0.01) 1.08 (0.01) 1.26 (0.03) 0.92 (0.02) 0.89 (0.02) 0.99 (0.02) 1.09 (0.02) 1.06 (0.03) 

R2 0.9 0.88 0.87 0.84 0.7 0.87 0.87 0.95 0.84 0.6 

β0 (*104) 6.4 (5.4) 10 (6.3) 12.9 (7.8) 10.3 (7.3) 2.9 (1.7) 11.3 (9.4) 13.5 (9.5) 12.2 (7.4) 6.6 (10.5) 3.2 (3.9) 

β1 0.9 (0.08) 0.87 (0.09) 0.82 (0.09) 0.75 (0.09) 0.61 (0.11) 0.86 (0.14) 0.85 (0.14) 0.8 (0.07) 0.82 (0.15) 0.71 (0.28) 

RMA β0 (*104) 3.8 (4.6) 6.7 (5.3) 8.9 (6.1) 6.3 (5.6) 1.7 (1.2)  8 (8.1) 10.1 (8.3) 10.8 (5.4) 2.6 (9) 0.7 (3.8) 

RMA β1 0.95 (0.08) 0.93 (0.09) 0.88 (0.08) 0.82 (0.08) 0.73 (0.1)  0.91 (0.13) 0.91 (0.13) 0.82 (0.07) 0.89 (0.14) 0.92 (0.24) 

Max (sr-1) 0.017 0.02 0.032 0.029 0.006 0.017 0.02 0.032 0.019 0.003 

N 55 55 55 55 55 26 26 27 26 21 

**Numbers in parentheses indicate 95% confidence intervals (± ME) for listed statistics, underlined values indicate significant improvement. 491 

 492 

Table 5: Matchup statistics for VIIRS MSL12 data according to two QA schemes.  493 

 “Current” L2 Flags applied “Current” Mask, CV < 0.2, +/- 2 h 

Band (nm) 410 443 486 551 671  410 443 486 551 671 

UPD (%) 28 (1) 22 (1) 19 (1) 22 (1) 41 (1) 31 (3) 22 (2) 18 (1) 22 (2) 31 (3) 

MRD (%) 34 (3) 18 (2) 13 (1) 14 (1) 45 (3) 49 (9) 23 (4) 13 (3) 15 (4) 44 (7) 

RMSD 0.0015 0.0015 0.0021 0.0021 0.0006 0.0019 0.0015 0.0017 0.0019 0.0007 

MAPD (%) 46 (3) 28 (2) 23 (1) 26 (1) 61 (3) 58 (9) 31 (4) 22 (2) 28 (3) 48 (6) 

MR 0.95 (0.02) 0.94 (0.01) 0.94 (0.01) 0.96 (0.01) 1.01 (0.03) 0.86 (0.02) 0.91 (0.02) 0.94 (0.02) 0.96 (0.02) 0.81 (0.03) 

R2 0.85 0.87 0.87 0.86 0.71 0.82 0.86 0.95 0.83 0.57 

β0 (*104) 11.1 (6.2) 10.3 (6.2) 12.7 (7.7) 11.1 (7.6) 3.4 (2) 16.1 (10.3) 11.9 (9.1) 11.7 (8.2) 7.3 (11.8) 2.8 (4.8) 

β1 0.88 (0.1) 0.88 (0.09) 0.87 (0.09) 0.86 (0.09) 0.78 (0.13) 0.83 (0.15) 0.88 (0.14) 0.88 (0.08) 0.93 (0.17) 0.97 (0.4) 

RMA β0 (*104) 7.5 (5.2) 6.8 (5.3) 8.7 (6.1) 7.1 (5.8) 2 (1.4)  11.7 (8.8) 8.3 (7.9) 10.1 (6) 2.5 (9.9) -0.3 (4.4) 

RMA β1 0.96 (0.09) 0.95 (0.09) 0.93 (0.08) 0.93 (0.09) 0.92 (0.12)  0.91 (0.14) 0.95 (0.13) 0.9 (0.08) 1.02 (0.16) 1.29 (0.34) 

Max (sr-1) 0.017 0.02 0.032 0.029 0.006 0.017 0.02 0.032 0.019 0.002 

N 58 58 58 58 58 28 29 28 27 22 

**Numbers in parentheses indicate 95% confidence intervals (± ME) for listed statistics, underlined values indicate significant improvement. 494 

 495 

4. Discussion 496 

4.1. Overall performance 497 

These analyses, in the aggregate, show reliable performance of both the MODISA and VIIRS instruments 498 

as well as the most recent calibration efforts (and associated atmospheric correction routines) and 499 

reprocessing efforts of both NOAA (April 2017 SDR) and NASA (2018.0). For all three datasets studied, 500 

UPD for the green band Rrs hovers around 20%, only slightly higher than the ~15 % MAPD reported by 501 

numerous other studies (Table 1). When matchups identified as “Low Ca” (water types 1-7) were 502 

analyzed independently, results showed UPD and MRD very close to those previously reported MAPD of 503 
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~15%. Most datasets showed slight positive bias relative to in situ data for all wavebands. For MODISA, 504 

this contrasts with some previous assessments (Antoine et al., 2008; Maritorena et al., 2010; Mélin et 505 

al., 2007; Zibordi et al., 2009), but agrees with more recent findings (Hlaing et al., 2013). Note, however, 506 

that changes in bias may result directly from changes to instrument calibration coefficients, which can 507 

vary by processing and calibration versions (see Table 1 for versions used in previous validation efforts). 508 

Also, because the purpose of this study was to show the effects of QA procedures on uncertainties 509 

estimates, no attempt was made to separate the uncertainties from the satellite and in situ sources. The 510 

final uncertainty estimates thus inherently contain those from in situ measurements. 511 

 512 

Aggregate results were also variable between the MSL12- and L2GEN-based VIIRS processing schemes 513 

(Tables 4-5), with neither proving consistently more accurate (even when considering only common 514 

pixels, results not shown). The MSL12-based VIIRS processing resulted in slightly more matchup points 515 

than L2GEN-based VIIRS processing when identical flagging schemes were used (Tables 4-5). Moreover, 516 

response to QA procedures were occasionally variable between these two datasets, especially for 517 

individual L2 flags (Fig. 6). We also note an apparent preference in the literature for the L2GEN (SeaDAS) 518 

processing for VIIRS data. This is perhaps due to familiarity within the ocean color community to the 519 

SeaDAS software package (MSL12 is much newer) or to availability of the SeaDAS software for custom 520 

processing and application to other sensors.  521 

 522 

The difference in performance between the “All Matchups” and “Current” L2 Flags masking regimes (Fig. 523 

10) also highlights the effectiveness of the L2 flags as a QA method. For MODISA data, the default L2 524 

Flags (LAND, HILT, CLDICE, ATMFAIL) masking scheme performed well, with few obvious outliers in any 525 

band (Fig. 10), and decent matchup statistics for the green and red bands. For the VIIRS datasets, 526 

however, outliers after simple default L2 Flag masking were much more prominent (Fig. 10). Activating 527 
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the “Current” L2 mask for VIIRS data removed most of these outliers and generally reduced (i.e., 528 

improved) the UPD by approximately half (much more in some cases), with even larger improvement in 529 

MRD. This impact was not as drastic for MODISA data, especially for the 671 nm band.  530 

 531 

4.2.  QA Methods 532 

As with any satellite ocean color investigation or algorithm development study, validation analyses 533 

inherently include a compromise between data quantity and quality. For both the in situ and satellite 534 

datasets, the approach is generally to include the largest number of matchups with the largest dynamic 535 

range (thereby maximizing statistical power) without compromising from the highest quality data 536 

available.  537 

 538 

L2 flags are typically the first tool used to cull satellite measurements of potentially reduced quality. 539 

Generally, this is performed with little (if any) assessment on their impacts to both the quality and 540 

quantity of the matchup dataset as a whole. In this study, we found variability in the impact of individual 541 

L2 Flags by wavelength, both in terms of data quantity and quality (Fig. 6). In particular, flags for 542 

conditions associated with coastal waters (e.g., COASTZ, LANDADJ, TURBIDW, and ABSAER) often 543 

identified the largest number of pixels. Activating these flags caused improvement in matchup statistics 544 

for the blue bands, but the effects were much more muted for other bands (even substantially 545 

diminishing statistics for the red band). Another consequence of activating these flags, however, is a 546 

large restriction in the dynamic range of the validation dataset, as most nearshore and optically complex 547 

waters are identified and removed by these flags. The STRAYLIGHT flag also caused a large reduction in 548 

the quantity of data, and resulted in matchup statistic trends similar to those of the “coastal” flags 549 

mentioned above. The STRAYLIGHT flag is implemented as a 5x7 pixel box from any HILT pixel, which 550 

includes land targets. As a consequence, the STRAYLIGHT flag masks many estuarine matchups (see Fig. 551 
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3). Nevertheless, we included the STRAYLIGTH flag in our “Current” mask due to precedent in the 552 

literature (Table 2) as well as our determination that the improvements in matchup statistics 553 

outweighed the negative impacts on data quantity and dynamic range. Note that while Feng and Hu 554 

(2016) suggested that the STRAYLIGHT flag could be implemented as a 3x3 pixel box without sacrificing 555 

data quality in open ocean waters, it is not clear if this finding holds for nearshore waters, and 556 

assessment of such was beyond the scope of the present study.  557 

 558 

As noted in Table 2, there is no real consensus on which particular flags should be applied when 559 

performing validation of satellite data. Indeed, most studies do not even list the specific flags used for 560 

this purpose. Nevertheless, the general assumption is that removing more flag-identified pixels will 561 

improve validation results. The analysis of UPD and MRD changes resulting from the removal of data 562 

identified by individual flags (Fig. 6) challenges this assumption. For example, activation of certain flags 563 

(e.g., TURBIDW) often decreased performance relative to the unmasked (“no” flags) dataset. 564 

Furthermore, although the “All” flags mask produced the best (or close to the best) matchup statistics 565 

for most bands and sensors, MODIS red band matchups remaining after application of this mask were 566 

actually worse than the “no” flags dataset (Fig. 6). For the 486 and 551 bands, activation of “All” flags 567 

showed no substantial improvement in UPD or MRD relative to the “Current” or “L3 Mask” flagging 568 

schemes, especially when considering that 63-87% of the data were disqualified. Nevertheless, it should 569 

be remembered that these L2 Flags represent globally optimized QA procedures as implemented by the 570 

processing agencies (NASA and NOAA). Use (or exclusion) of these flags for validation purposes should 571 

be done with caution – researchers need to consider if the masking scheme is justifiable. 572 

 573 

Beyond L2 Flags, three additional different QA schemes were individually assessed for impacts on both 574 

data quantity and quality (Fig. 7-9). With some specific exceptions, none of these methods 575 
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demonstrated widespread applicability for improvement in matchup statistics. Given the widespread 576 

use of these methods in culling data (Table 1), this result is somewhat surprising, but not unprecedented 577 

(Barnes and Hu, 2015; Mélin et al., 2007). Note that the matchup statistics for these three QA schemes 578 

were calculated after implementation of the “current” L2 flags mask, so these findings might not hold 579 

true for solo implementation. Indeed, the average QA_Wei values for the satellite datasets masked with 580 

“no” flags is quite low (0.73 - 0.78) relative to those after excluding pixels identified by the “Current” 581 

mask (0.90 - 0.92), meaning Fig. 7 would show much more substantial trends when calculated using the 582 

“no” flags data.  583 

 584 

Similar to the L2 Flags analyses, comparison of various QA_Wei thresholds (Fig. 7) highlights an issue 585 

with unsupervised exclusion of data points meeting (or failing to meet) certain criteria. Specifically, both 586 

the in situ and satellite datasets included spectra with extremely low QA_Wei (even QA_Wei = 0), many 587 

of which were collected in “dark” or “black” coastal waters where Rrs(551) < 0.0005 sr-1. Water samples 588 

associated with in situ spectra show high chlorophyll concentrations (6-11 mg m-3) and CDOM 589 

absorption (ag(443) = 4-18 m-1). Indeed, it seems that such waters are not represented in any of the 590 

QA_Wei water types, indicating the need for revision of that metric to either include an additional water 591 

type or relax the boundaries of an existing water type (likely 19) to include such conditions. In either 592 

case, it is often difficult to obtain valid satellite Rrs in such waters due to low signal:noise and 593 

atmospheric correction uncertainties.  594 

 595 

It is also important to highlight that although none of the QA schemes (beyond L2 Flags) resulted in 596 

widespread improvement in matchup statistics (Figs. 7-9), scatterplots (Fig. 10) do show a few individual 597 

outliers which are included in the dataset with only “Current” flags applied, but removed from the 598 

dataset with additional CV and temporal difference thresholds. In Figure 10, these show as red ‘+’ 599 
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without overlying blue ‘x.’ This is especially apparent in the 486 and 551 bands (Fig. 10) for all sensors, 600 

and is indicated mostly via improvements in RMSD, R2, and β1 (Tables 3-5). These outliers are largely 601 

coastal, and thus have somewhat smaller impacts on other metrics (i.e., UPD, MRD, MAPD, and MR) due 602 

to the larger denominator. Thus, we note that (1) the choice of metric is important, with various metrics 603 

showing differences depending on the data quantity and dynamic range; while (2) multiple QA schemes 604 

implemented in concert may show improvements in matchup statistics that are not apparent in solo 605 

implementations. 606 

 607 

4.3. Limitations and recommendations 608 

To our knowledge, the findings reported here represent the first attempt to extensively document 609 

effects of QA exclusion methods on satellite / in situ Rrs validation statistics. We have largely refrained 610 

from pairwise comparisons for each of the studied groupings, primarily because limited data quantity 611 

does not support such rigorous analysis for the multitude of QA options and thresholds assessed. Even 612 

in the absence of such statistics, the number of data points excluded by each incrementally tightening 613 

QA threshold is extremely important. For instance, a small quantity of matchups in highly 614 

heterogeneous environments (in time or space) may lead one to the conclusion that time difference 615 

between measurements or CV have little impact. Thus, we have refrained from drawing conclusions 616 

from changes in UPD resulting from only a few data points. Likewise, because different applications may 617 

have different requirements on uncertainties, it is impractical to define which matchup criteria lead to 618 

uncertainties meeting various requirements. This is especially true when considering that even the 619 

highest-quality MODIS reflectance data from ocean gyres can show reflectance uncertainties higher than 620 

the traditional requirements of 5% for blue bands in waters with Ca > 0.1 mg m-3 (Hu et al., 2013). For 621 

more productive waters, reflectance uncertainties can be substantially higher (Moore et al., 2014). 622 

 623 
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Although we tested implementation of several QA schemes (and combinations thereof) beyond those 624 

shown here, the results generally showed limited (and variable) impacts similar to those presented here. 625 

This is especially true across wavebands, as QA approaches that appear to provide maximum statistical 626 

benefit for blue bands often diminish results for green and red bands. This presents a challenge for 627 

identifying best-practice recommendations for future studies involving satellite / in situ matchups. We 628 

are similarly hesitant to unequivocally state that the results found here will generalize to other datasets. 629 

Additionally, we recognize that different datasets and / or objectives may be best suited by disparate QA 630 

approaches.  631 

 632 

On the other hand, it is also not our goal to advocate an “anything goes” approach to removing low 633 

quality data, as some level of standardization is important towards attaining comparable results across 634 

studies. It is also especially important to emphasize that decisions with respect to the specific flagging 635 

scheme and QA procedures need to be made with consideration of the real impacts to the dataset (e.g., 636 

reduction in data quantity, decrease in dynamic range, or exclusion of data from a specific environment 637 

or with an otherwise common attribute). Without this consideration, researchers can artificially improve 638 

matchup statistics by selectively implementing QA procedures that remove undesirable data.  639 

 640 

Therefore, we argue that the process detailed in this work (or a simplified version) can be applied as an 641 

important component to validation works going forward, allowing investigators to make informed 642 

determinations of the QA techniques and thresholds which most effectively remove low quality data 643 

while maximizing retained data quantity and retaining robustness of the dataset. While not necessary to 644 

test impacts of each individual L2 flag, quantifying the effects of a few flag combinations may lead to 645 

significant improvements (or degradations) in results. Of course, the final selection of flags must be 646 

made with consideration of the reason why a particular flag should be excluded. For example, the 647 
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COASTZ flag uses a static bathymetry to identify pixels shallower than 30m. While excluding pixels 648 

indicated by COASTZ would likely improve matchup results in many cases, this is alone is not a justifiable 649 

culling method for validation activities. 650 

 651 

With some modification, QA_Wei may be another effective method to identify low-quality data, 652 

although it is likely duplicative with L2 Flags. Fig. 8 provides some evidence that CV thresholds can be 653 

effective in offshore waters (low Ca), which concords with their stated purpose. However, it is clear that 654 

some of the more stringent data culling thresholds may actually degrade statistical performance. In 655 

most cases, for coastal waters, reducing the temporal gap between satellite and in situ measurements 656 

improved performance (which comports with intuition), while smaller disimprovements in performance 657 

were noted with tightening temporal gaps for offshore waters. Where possible, matchups should be 658 

extracted at Level-2 to avoid issues related to homogeneity assessment at scan edges. As for the 659 

particular statistical metrics, given the uncertainties associated with in situ Rrs data (Hooker et al., 2002; 660 

Hooker and Maritorena, 2000), we recommend use of UPD and RMA regression (as opposed to the 661 

more widely used MAPD and simple linear regression). Although it is difficult to statistically compare 662 

disparate metrics (e.g., UPD vs MAPD), with a few exceptions, UPD and RMA coefficients were improved 663 

as compared to their more commonly used analogs. 664 

 665 

Finally, the statistical measures (UPD, MPD, etc.) presented here represent those from point matchups 666 

after applying various QA techniques, and they do not represent uncertainties in satellite global 667 

products after spatial and temporal binning. The spatial homogeneity test and temporal matchup 668 

windows, in addition to other QA criteria, are intended to serve as the best effort to minimize the 669 

impact of differences between in situ measurements (point sample) and satellite measurements 670 

(integrated ≥1 km2 pixel). These criteria are not and should not be used when generating global 671 
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products. Additionally, uncertainties in the global products are expected to reduce significantly as data 672 

at pixel-resolution are binned in space and/or time (Qi et al., 2017). The intention of this study is 673 

therefore to provide a comparison and recommendation on the QA criteria when validating satellite-674 

derived Rrs data products rather than detailing the various uncertainty sources in satellite data products 675 

at various spatial and temporal scales. For the latter, readers are referred to a recent community effort 676 

led by the International Ocean Colour Coordination Group (IOCCG, Mélin and Doerffer, 2015). 677 

5. Conclusions  678 

In this paper, we quantify the statistical performance of commonly used satellite reflectance datasets 679 

against a collection of high-quality in situ data and critically assess some standards used in validation 680 

exercises. The overall strong validation statistics reflect positively on the calibration efforts and 681 

atmospheric correction schemes developed by both NOAA and NASA. The variability in results according 682 

to QA regimes leads us to recommend that future studies include some consideration of the impacts of 683 

methods used to discard low quality data, followed by clear presentation of the methods used in 684 

generation of the final results. These moderate changes will hopefully lead to larger datasets with wider 685 

dynamic range being used in validation studies, with documentation allowing fair tracking of satellite 686 

ocean color data over time (and across processing versions), towards the ultimate goal of ensuring high 687 

quality and consistent environmental data records across multiple satellites. 688 
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